Phase pure α-Mn2O3 prisms and their bifunctional electrocatalytic activity in oxygen evolution and reduction reactions
نویسندگان
چکیده
منابع مشابه
A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e- process, while oxygen can be fully reduced to water by a 4 e-/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2-. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both...
متن کاملA metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out with noble metals (such as Pt) and metal oxides (such as RuO₂ and MnO₂) as catalysts, respectively. However, these metal-based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor stability and detrimental environmental effects. Here, we describe a meso...
متن کاملAgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media.
Bimetallic AgAu Janus nanoparticles were prepared by galvanic exchange reactions of 1-hexanethiolate-passivated silver (AgC6) nanoparticles with gold(I)-mercaptopropanediol complex. The AgC6 nanoparticles were deposited onto a solid substrate surface by the Langmuir-Blodgett method such that the galvanic exchange reactions were limited to the top face of the nanoparticles that was in direct con...
متن کاملElectrocatalytic Oxygen Reduction Reaction
Oxygen (O2) is the most abundant element in the Earth’s crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes such as biological respiration, and in energy converting systems such as fuel cells. ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to...
متن کاملSpinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.
Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dalton Transactions
سال: 2016
ISSN: 1477-9226,1477-9234
DOI: 10.1039/c6dt03158g